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ABSTRACT

Software forms a critical part of our lives today. Verifying software to avoid violations of safety

and security properties is a necessary task. It is also imperative to have an assurance that the

verification process was correct. We propose a human-centric approach to software verification. This

involves enabling human-machine collaboration to detect vulnerabilities and to prove the correctness

of the verification.

We discuss two classes of vulnerabilities. The first class is Algorithmic Complexity Vulnerabilities

(ACV). ACVs are a class of software security vulnerabilities that cause denial-of-service attacks. The

description of an ACV is not known a priori. The problem is equivalent to searching for a needle in

the haystack when we don’t know what the needle looks like. We present a novel approach to detect

ACVs in web applications. We present a case study audit from DARPA’s Space/Time Analysis for

Cybersecurity (STAC) program to illustrate our approach.

The second class of vulnerabilities is Memory Leaks. Although the description of the Memory

Leak (ML) problem is known, a proof of the correctness of the verification is needed to establish trust

in the results. We present an approach inspired by the works of Alan Perlis to compute evidence of

the verification which can be scrutinized by a human to prove the correctness of the verification. We

present a novel abstraction, the Evidence Graph, that succinctly captures the verification evidence

and show how to compute the evidence. We evaluate our approach against ML instances in the

Linux kernel and report improvement over the state-of-the-art results. We also present two case

studies to illustrate how the Evidence Graph can be used to prove the correctness of the verification.
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CHAPTER 1. OVERVIEW

1.1 Research Theme

Software is ubiquitous in the modern world. Even mission-critical and safety-critical applications

are increasingly dependent on software. As demonstrated by Ariane 5 disaster [1], software failures

can prove extremely costly. More recently, a software glitch caused all of Boeing 737 max aircrafts

to be grounded [2]. Thus, it is imperative to ensure that the software does not violate any safety

or security properties.

Completely automated verification of every software safety and security property is not possible

while completely manual verification of software is not feasible. Even when a completely automated

verifier can be developed for a specific problem, how does one know that the verification is correct?

There needs to be a proof of the verification that provides assurance that the result is indeed correct.

Software assurance inherently involves learning and reasoning about large code. The overarching

question for any software assurance technology is: should this learning and reasoning be machine-

centric or human-centric? The traditional vision is machine-centric with formal methods based on

low-level formal specifications. While this vision has led to incremental progress over the last fifty

years, there has been a quantum jump in escalated safety and security risks emanating from software

failures. This calls for a human-centric approach which allows for a human to collaborate with the

machine.

The theme of our research has been Human-Machine Collaboration. We were inspired by the

writings of Frederick Brooks, who writes [3]: “If indeed our objective is to build computer systems

that solve very challenging problems, my thesis is that IA > AI, that is, that intelligence amplifying

systems can, at any given level of available systems technology, beat AI systems. That is, a machine

and a mind can beat a mind-imitating machine working by itself.”. Our work has been about building

IA systems to enable human-machine collaboration for verifying software.



www.manaraa.com

2

1.2 Organization

This thesis is divided into two parts.

1. Description of the vulnerability is not known a priori: The first part discusses our work

in the context of a class of software security vulnerabilities called Algorithmic Complexity

Vulnerabilities (ACV). Often, the description of the ACV is not known a priori. Finding

ACVs in large software is thus equivalent to searching for a needle in the haystack when you

don’t know what the needle looks like. Thus, first, the vulnerability needs to be hypothesized

and then the software needs to be searched for the hypothesized vulnerability. We describe an

approach to detect ACVs developed as part of the DARPA STAC project [4]. This discussion

spans Chapters 2-4.

2. Description of the vulnerability is known a priori: Even when the description of the vulner-

ability is known, i.e. we know what to search for, verifying software to assure there is no

vulnerability is a hard problem in general. Proving correctness of the verification is also a

daunting task. In Chapter 5 we discuss a visionary paper by Alan Perlis [5] and argue for the

need for human scrutiny of the verification proofs. We provide an example to support our

motivation. In Chapter 6 we discuss the challenges involved in constructing such verification

proofs. In Chapter 7 we discuss an approach to compute verification proof artifacts and a

schema to present it to a human for further scrutiny. In Chapter 8 we present results from an

empirical study of the Linux kernel.
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CHAPTER 2. DETECTING ALGORITHMIC COMPLEXITY

VULNERABILITIES

In this chapter, we discuss a class of cybersecurity vulnerabilities known as Algorithmic Com-

plexity Vulnerabilities. DARPA identified this class of vulnerabilities as a rising threat and launched

the Space/Time Analysis for Cybersecurity (STAC) program [4] to develop novel tools that can de-

tect the presence of Algorithmic Complexity Vulnerabilities. Chapters 3 and Chapter 4 discuss

the research performed on detecting Algorithmic Complexity Vulnerabilities on the DARPA STAC

program.

2.1 Introduction

Algorithmic Complexity Vulnerabilities (ACV) are a class of vulnerabilities that can be exploited

to mount a denial of service (DoS) attack. [6]. MITRE describes the effect as “An algorithm in a

product has an inefficient worst-case computational complexity that may be detrimental to system

performance and can be triggered by an attacker, typically using crafted manipulations that ensure

that the worst case is being reached.” [7]. In contrast with traditional DoS attacks, which involve

flooding the target server with redundant inputs to block a legitimate request, ACVs allow DoS

attacks with very few requests or a small input. In other words, attacker performs far less amount

of work compared to their target.

Let’s illustrate an ACV with an example. We will use the example of a billion laughs attack on

an XML parser [8]. A standard XML file contains a “contents section” with instances of predefined

entities. The entities are of the form <!ENTITY name "value"> where name is the variable name for the

entity and value is its definition. An entity can refer to another entity using an ampersand (&)

i.e. the value for that entity would be of the form &entityname. When an XML parser encounters

such entities while parsing the contents section, it will replace the value with the definition of the
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referenced entity and continue parsing. If the entity expansion is left unchecked then an attacker

can easily specify a huge XML document using a small number of entities by repetitively referencing

the entity definitions. Listing 2.1 shows a standard exploit [8]. It uses 10 different XML entities

(lol-lol9) where lol is defined as "lol". All other entities are defined as 10 of some other entity. The

document contents only one instance of lol9. The parser will expand it to 10 lol8s, each of which

is expanded to 10 lol7s and so on.

Listing 2.1 XML-bomb
1 <?xml version="1.0"?>

2 <!DOCTYPE lolz [

3 <!ENTITY lol "lol">

4 <!ELEMENT lolz (# PCDATA)>

5 <!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">

6 <!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">

7 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">

8 <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">

9 <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">

10 <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">

11 <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">

12 <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">

13 <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">

14 ]>

15 <lolz>&lol9;</lolz>

Listing 2.2 shows how a standard XML parser is used. On line 17, the parse method is invoked

to parse the XML file and serialize it. The serialization can expand an entity a large number of

times. For example, in the case of billion laughs, the entity lol9 eventually expands a billion times,

thus earning the moniker billion laughs. Naturally, there needs to be an expansion limit. This limit

is not set by default and if the developers don’t set the limit then the parser keeps expanding the

XML entities unconditionally. In that case, by the time the parser is finished parsing the billion

laugh XML, it has created a document of over 3 GB. In other words, if left unchecked the XML



www.manaraa.com

5

expansion consumes an exponential amount of resources in the worst-case. Note that, the input file

is disproportionately small in size, barely 100 bytes. If the application using the XML parser is not

handling this worst-case then it is said to contain an ACV which can be exploited to deny memory

resources to benign users.

Listing 2.2 "Standard XML Parser"
1 // Standard usage of XML parser

2 // If the expansion limit is not set ,

3 // then the code is vulnerable to xml bomb.

4

5 int main (int argc , char* argv []) {

6 // Initializations

7

8 // Critical: Expansion limit

9 // If this is not set then XML bomb can be triggered

10 // sm.setEntityExpansionLimit (100);

11

12 const char* xmlFile = argv [1];

13 try {

14 // The file can include arbitrary number of expansions

15 // Without a expansion limit , the parser will expand all

16 // This can lead to creation of a gigantic file on disk

17 parser.parse(xmlFile);

18 } catch (...) {

19 }

20 return 0;

21 }

An example would be Microsoft Word, which uses an XML-like parser to load its documents.

If a user attempts to open a word document containing the code in Listing 2.1, then Word will

attempt to load the expanded document in the memory, and in most cases will hang [9].
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In recent years, exploits using ACVs are on the rise. Crosby and Wallch [6] coined the term ACV in

2003 and theorized an attack on hash tables. In 2011, Klink and Walde [10] demonstrated the attack

and noted that it plagues hash table implementations in almost all the widely used libraries. This

attack was further refined and demonstrated by Bernstein et al. a year later [11]. It is imperative

that we find ways to mitigate the risks posed by ACVs and hence develop technology to detect

ACVs.

2.2 DARPA STAC Engagements

This motivated the DARPA Space/Time Analysis for Cybersecurity (STAC) program [4]. It called

for a novel human-on-the-loop approach to detect ACVs as completely automated detection of ACVs

is intractable [4].

DARPA STAC program was structured like a Cyber Defense Competition. There were three

kinds of research teams. BLUE teams were tasked with developing tools to detect vulnerabilities in

given software. The RED team was tasked with creating challenge apps in order to evaluate the tools

developed in the STAC program. The WHITE team was tasked with evaluating the performance

of BLUE teams using the apps developed by the RED team.

Let’s first shed some light on these challenge apps. DARPA contracted security professionals

(RED team) to develop apps containing vulnerabilities based on real-world software. These apps

are fairly large and the vulnerable code is hardened against detection techniques by obfuscating the

code. Each app comes with a description of the overt functionality and a YES/NO question about

a vulnerability and analysts are tasked with answering that question. This includes the type of

resource consumption (space or time), the threshold for resource consumption, and the constraints

on input size. In order to be considered a valid ACV, the detected ACV by a tool must exceed

the threshold while staying within the input constraints. Most of these apps are already publicly

available on GitHub [12].

We participated in the program as a BLUE team. The apps were divided into 8 sets and each

set on average contained 30 apps. The analysis process of each set was called as an engagement.
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The time allotted for every engagement was gradually shortened (starting from 2 months to less

than one week in the end), while the number of apps to analyze was increased. We emerged as one

of the top-performing teams on the program, eventually achieving 100% accuracy. In Chapter 3 we

discuss our approach to detecting ACVs and in Chapter 4 we discuss the tool we developed and

present a case study of ACV detection.

2.3 Related Work

We discuss related work in three categories: static analysis for extracting high-level semantic

patterns from loops, model-based formal verification for extracting loop invariants and classifying

loops, and tools to analyze domain-specific loops.

Semantic patterns: Existing work on extracting semantic loop patterns [13, 14, 15] can classify

loops based on a high-level specification of their semantics, e.g., whether a loop involves a search,

selection, or initialization of a data structure. While these patterns are useful in general for un-

derstanding the high-level functionality, they cannot filter out loops reachable from particular user

input, or classify loops based on their dependence on local and inter-procedural data, which are

critical aspects to hypothesizing ACVs.

Formal Verification, Symbolic Analysis and Loop Summarization: Formal Verification

approaches to derive loop invariants or estimate loop iteration counts [16, 17, 18, 19] have been

used for several applications including WCET (worst-case execution time). Many techniques have

been proposed to summarize the loop effect [20, 21, 22, 23] using symbolic analysis. LESE [24] aims

to compute iteration count precisely using symbolic execution and use it to infer the loop effect.

The technique in [22] generates pre- and post-conditions as loop summaries using dynamic symbolic

execution. These techniques focus on single-path loops. Proteus [20] classifies the complexity of

the loop execution for multi-path loops into four types based on conditions on the paths. All the

above techniques rely on the presence of an induction variable in the loop. In contrast, our analyses

characterize loops with respect to any variable that affects termination (which subsumes induction

variables), and apply to loops with single or multiple paths.



www.manaraa.com

8

Program Abstractions: Program Dependence Graphs (PDG) [25, 26] have been traditionally

used to abstract data and control dependences of a program. The information in the Termination

Dependence Graph (TDG) and Loop Projected Control Graph (LPCG) abstractions collectively

contain all the information in the PDG that is relevant to the termination of a loop [27]. The TDG

uses a kind of taint analysis for reaching definitions [28] to track the flow of information from various

sources to the termination condition (sink). This differs from the traditional taint analysis used for

PDG construction in that our taint analysis also tracks flows from callsites to their return values

to capture potential dependencies through callsites to the termination conditions. In addition, the

TDG classifies the inter-procedural dependencies based on the source type. This information can

help alert analysts about the additional analysis that needs to be done to audit the loop for ACVs.

The LPCG differs from the PDG in the control dependence aspect in that it elides equivalent paths

from the loop header to the termination conditions.

Domain-specific analysis: The most closely related work to ours is the analysis of Android loops

by CLAPP [29]. CLAPP analyzes loops to extract information about the operations that influence

and control the number of iterations of a loop, as well as operations that constitute the loop’s body.

For the security aspect, CLAPP identifies loops with calls to a set of high-risk APIs (which can be

captured using subsystems interactions in our approach), loops whose iterations depend on certain

external data sources such as network data, and potentially infinite loops (which can be inferred

using the number of terminating conditions from our loop catalog). However, like all the other

approaches, CLAPP does not support interactive visualization of key aspects of a loop, which is

crucial in helping analysts comprehend loops and hypothesize ACVs in them.
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CHAPTER 3. LOOP CHARACTERIZATIONS FOR DETECTING

ALGORITHMIC COMPLEXITY VULNERABILITIES

In this chapter we discuss our approach to detecting ACVs. It summarizes key concepts from our

paper Intelligence Amplifying Loop Characterizations for Detecting Algorithmic Complexity Vulner-

abilities by Payas Awadhutkar, Ganesh Ram Santhanam, Benjamin Holland, and Suresh Kothari.

It was published at the 24th Asia-Pacific Software Engineering Conference (APSEC 2017), Nanjing,

China, December, 2017 [27]. Our approach to detect ACVs is a four-step approach: (a) automat-

ically generate a loop catalog that identifies all loops and the characteristics of each loop. We

introduce new concepts and patterns to define loop characteristics, (b) applying the knowledge

gained from the loop catalog, the analyst can configure filters to select loops that the analyst wants

to scrutinize, (c) the analyst uses the visual querying mechanism to scrutinize selected loops and

the control flow paths containing the loops to gather evidence for ACVs, (d) based on the evidence,

the analyst performs targeted dynamic analysis to confirm each ACV. The dynamic analysis and

the tool for it are described in the paper [30].

An important part of our research has been to decipher relevant loop characteristics by studying

publicly known examples of ACVs and the ACV challenges posed by DARPA. For example, an

automatic analyzer can determine the bound to be 10 for the loop for(i=0; i<10;i++) int arr = new

int[Integer.MAX];. However, not the bound but the large array allocation in each iteration is the

loop characteristic relevant for ACVs. The relevant characteristics may be hidden in a method

that is invoked within the loop. Thus, an inter-procedural analysis is necessary to compute loop

characteristics. Moreover, the relevant characteristics may be just on one path, and not on the

other paths within a loop. Thus, a path-sensitive analysis is also important to reason about ACVs.

Furthermore, it is not enough to characterize a loop in isolation. It is important to characterize

loops in the context of program artifacts that connect a loop to the rest of the program. For
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example, since ACVs are triggered by attacker’s input, it is important to characterize whether the

termination of a loop can be controlled by user input.

In summary, our research contributions are:

• Loop Abstractions: These are the building blocks for characterizing loops, and they include: (a) a

data flow abstraction for loops called termination dependence graph, (b) a control flow abstraction

called loop projected control graph.

• Loop Characterizations and Patterns: These are derived using loop abstractions and applied to

enable the analyst to create filters to select loops with high possibility of ACVs. Specifically, we

have 24 loop patterns based on different termination characteristics.

• Interactive Querying for Visual Loop Scrutiny : These mechanisms, called Smart Views, enable the

analyst to scrutinize selected loops and gather the evidence for ACVs. The analyst can compose

powerful program analyses using Smart Views and a graphical query language.

3.1 Research Gap

We discuss the research gap that has motivated the research presented in this chapter.

The program artifacts that can lead to ACVs include loops, recursion, or resource-intensive

library APIs [31]. In this research the focus is on loops. To assess the relevant loop characteristics,

we studied loops with ACVs. We have curated 15 representative loop snippets from the challenge

apps provided by DARPA. We have made these loops snippets available in a public repository [32].

As an experiment, we tried the state-of-the-art loop analysis tool Proteus [20] that received the

2016 Distinguished FSE Paper award. None of the 15 loops can be precisely summarized by Proteus.

We then identified specific characteristics of what makes the curated loops complex. Using them as

markers of complexity, we found that the loops in commonly cited benchmarks (e.g. SV-COMP [33])

lack the complexity that one encounters in detecting ACVs.

Our complexity markers can be summarized as: (a) loop termination depends on variables that

are not induction variables [34], (b) loop termination logic involves inter-procedural dependencies,



www.manaraa.com

11

(c) the complex connection between user input and loop termination, (d) the multitude of paths and

the presence or the lack thereof of guards on these paths to prevent excessive resource consumption

operations in the loop. Of the 15 ACV loops we have gathered from the DARPA challenge apps,

all 15 loops have the complexity markers (a), (b), (c), and 11 loops have the marker (d).

As an alternative to precise analysis, we tried the use of smells to detect ACVs [35]. In line

with the findings of [36], these smells tend to be either too specific (too many false negatives) or

too generic (too many false positives).

3.2 Loop Abstractions

Loop abstractions capture and represent the essentials of loops and the connecting parts of the

program that affect loop behaviors. One abstraction is to capture the loop termination behavior

based on the data flow to the loop termination conditions. Another abstraction is to facilitate path-

sensitive analysis of loop behaviors to identify a control flow path with “expensive computation” as

a potential ACV.

Termination Dependence Graph (TDG): This is a data flow graph designed to capture: (a) the

data sources that influence the loop termination, and how the termination depends on local or inter-

procedural data flow, and (b) the modifications of the variables that affect the loop termination.

This abstraction serves as the foundation for developing loop behavior patterns, such that each

pattern implies a specific mode in which the loop terminates. These patterns are discussed in

Section 3.3.3.

The union of backward data flow slices from the termination conditions gives us all the data

sources which can influence the termination conditions. However, this is not sufficient to reason

about the loop termination behavior because it does not capture all the modifications of these data

sources. So we also need to compute forward data flow slices starting from the data sources to

capture the modifications of the variables that affect the loop termination.

The TDG is defined with respect to a loop’s termination conditions, i.e., the branch conditions

through which the loop can exit. The TDG for a loop is S ∪ F where (1) S includes the union of
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all the intraprocedural backward data flow slices from the termination conditions of the loop, and

(2) F includes the union of all the intraprocedural forward data flow slices from all the variable

assignments in S. The S part gathers the data sources that influence the loop termination, and F

the part gathers the modifications of the variables that affect the loop termination.

A summary of the inter-procedural data flow dependencies is computed along with the TDG and

is included in the loop catalog. For example, the TDG of a loop in a method M whose termination

depends on the size of a collection passed as a parameter to method M requires the data flow from

all potential methods that callM . The data flow between the formal parameter and the termination

condition is shown in the TDG. An analyst can use the parameter in the TDG as an input to an

Atlas query to gather the inter-procedural data flow into the parameter.

In Section 3.3.3, we discuss the use of TDG in an empirical study to define the Loop Termination

Patterns (LTPs). The LTP type of each loop is recorded in the loop catalog. The LTP type indicates

the complexity of loop termination and it is an important metric to select complex loops that are

more likely to have ACVs.

Loop Projected Control Graph (LPCG): This is designed as a compact representation of

relevant control flow within the loop. There is an LPCG per loop.

The compaction is based on the Projected Control Graph (PCG), a notion introduced by Tamrawi

et al. [37]. It is an optimal mathematical abstraction to address the roadblocks to path-sensitive

analysis. The PCG is a projection of the CFG to retain only the execution behaviors relevant to a

given problem and elide duplicate paths with identical execution behavior.

A mathematical definition of the PCG and an efficient algorithm to transform a CFG to a PCG

are presented in [37]. We create an LPCG for each loop by applying the PCG algorithm to the

CFG subgraph restricted to the loop. The PCG algorithm requires as input a subset of CFG nodes

relevant to behaviors of interest. For deriving an LPCG we use the following nodes: (a) loop header

node (entry point of the loop), (b) termination condition nodes, and (c) data flow and callsite nodes

from the TDG. In the case of the LPCG, paths reaching the same termination condition are elided

by the PCG algorithm unless the paths include different sets of nodes from the TDG.
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The LPCG distills the distinct loop termination behaviors in a compact representation. It is

especially useful when the number of control flow graph (CFG) paths is very large but many paths

have identical termination behaviors. LPCG facilitates detection of ACVs by providing an efficient

way to focus on distinct behaviors. LPCGs are also useful to isolate paths with respect to the loop

functionality (e.g., network, IO, crypto, etc.). To do so, the calls to subsystems are used as relevant

nodes for creating the LPCG.

3.3 Loop Characterizations

Loop characterizations are computed automatically and used to create filters to select loops

with high possibility of ACVs. We have used for this study 25 loop characterizations organized

by categories such as conformance to loop termination patterns, monotonicity, loop control vari-

able attributes, data flow to the loop control variables, the control flow paths inside a loop, and

interactions with the subsystems

3.3.1 Loop Control Variable Attributes

A Loop Control Variable (LCV) is a variable that influences any termination condition of a loop.

LCVs subsume induction variables [34], which are defined as variables whose modification in every

iteration can be expressed as a loop invariant expression. Our definition of LCVs is particularly

important for detecting ACVs. For example, consider a variable influencing the termination of a

loop passed as an argument to a method, where it is assigned to a value controlled by the attacker’s

input. Clearly, it is critical to reason about the variable’s updates to detect a potential ACV. This

variable would qualify as an LCV for the loop. However, it is not an induction variable.

We analyze LCVs over two dimensions: the type of the LCV, and the data flow dependencies of

the LCV.

Type of Loop Control Variables: Knowledge of the type of an LCV for a loop can indicate

what kinds of resource consumption may cause an ACV. For example, knowing that an LCV is of
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Figure 3.1 Loop attributes used for characterizations

array type, along with the fact the array size can be controlled by the attacker, raises the possibility

of ACV involving excessive space consumption. We support the following control variable types:

• Primitive: Primitive variables are used to iterate over a range of numeric values. An example

of such a loop’s header is for(i = 0; i < n; i++), where i is the loop control variable.

• Array: Array index variables are used to traverse an array. An example of such a loop header

is for(i = 0; i < length(array); i++).

• Cursor: Cursors are used to iterate over collections.

java.util.Iterator and java.util.Enumeration are the most commonly employed cursors. Cursor APIs

come in pairs, one which advances the cursor and other checks existence of a valid next cursor

position. For example, loops invoke Iterator.next() in each iteration, which returns the current

element at the cursor and advances the cursor. This is paired with a call to Iterator.hasNext()

which checks for existence of a valid next cursor position prior to the next iteration. A similar

iteration mechanism is provided by java.util.Enumeration’s hasMoreElements and nextElement APIs.
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Data Flow Dependency of Loop Control Variables: In addition to the type, it is also impor-

tant to know the data flow to the loop control variables. We will refer to this as the data dependence

of loop control variables. We track intra-procedural (local) and inter-procedural (global) data de-

pendence. The different forms of global dependence include object field, parameter, or return value

from a callsite and these are recorded to assist with interactive analysis and cataloging. The infor-

mation is particularly useful for detecting ACVs. For example, if the dependence for the size of the

array is through a parameter, then passing a large array size value as a parameter creates the ACV

possibility of excessive space consumption.

We define four levels of locality of dependencies for every loop control variable in a loop: 1)

Local, 2) Callsite, 3) Parameter, 4) Field. We combine this information with the three types of the

loop control variables to create a loop control variable attribute vector of size 12 for every loop to

comprehend and catalog loops.

Loops whose termination conditions depend on the result of a callsite require an inter-procedural

analysis to determine how the loop’s termination may be influenced. Since loops invoking APIs in

the java.io package, e.g., while((line = file.readLine()) != null), are very common programming

practices, we specifically identify such loops as belonging to the ‘IO API’ class. The rest of the

loops with callsite loop control variables are classified as ‘OTHER API’.

3.3.2 Loop Monotonicity

A monotonic loop is one in which all loop control variable updates go in one direction, either

all increments or all decrements. In the simple example for(i=0; i<10; i++) {...}, all updates i++

to the loop control variable i are increments. Operator and callsites update complexities can make

it impractical to determine some cases of updates as increment, decrement ; we classify them as

neither. The salient points of how we handle the complex monotonicity cases are:

• We perform an analysis to detect the net effect of modifications of loop control variables. A

monotonicity categorization of arithmetic operators on primitive loop control variables cannot

simply be based on whether it performs addition, subtraction, or some such operation. For
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example, an addition operation cannot always be considered an increment, it could be a decrement

if the added number is negative.

• We classify callsite operators by partitioning the relevant APIs into increment APIs and decre-

ment APIs respectively. For example, Stack.push() and Stack.pop() are treated as increment and

decrement APIs respectively. We have developed a model of increment and decrement APIs that

operate on commonly used collection types in the JDK.

We determine monotonicity as follows:

1. Mark all the operators on loop control variables as increment or decrement (or neither).

2. Mark a control flow path in LPCG (beginning at the loop header and ending at a termination

condition) as monotonic if includes only the increment or only the decrement operators. A path

with operator of both kind or with a neither operator is marked as non-monotonic.

3. A loop is marked non-monotonic if has at least one non-monotonic path. Note that monotonicity

does not mandate a monotonic operation in every iteration.

The above algorithm is sound, i.e., it correctly identifies monotonic loops. Its completeness

cannot be guaranteed in cases such as when the LCV is passed as a parameter to a method or the

loop invokes an API which we do not model.

3.3.3 Loop Termination Patterns

Loop Control Variable attributes when combined with loop monotonicity gives an idea of how a

loop is going to behave. This enables us to define patterns of loop behaviors. We call these patterns

Loop Termination Patterns (LTP).

LTP is defined as a triple (M,T,D), where M ∈ {true, false} refers to the monotonic-

ity of the loop, T ∈ {Primitive,Array, Collection} refers to the type of the LCVs, and D ∈

{Local, F ield, Parameter, Callsite} refers to the dependency of the LCVs. This gives rise to 24
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Figure 3.2 An example of a loop termination pattern and its key parts

LTPs. A loop may have match to more than one LTP, in which case we list all possible matches. As

shown in our study in section 4.1 these 24 LTPs cover a significant portion of the real-world loops.

The 24 LTPs are divided in two groups as simple or complex termination patterns. Confor-

mance to a simple LTP implies that no inter-procedural analysis is required to reason about the

loop’s termination. Figure 3.2 shows the TDG of a loop which conforms to a simple LTP. The

highlighted parts of the TDG are captured in the LTP. Loops conforming to complex LTPs may

require inter-procedural analysis, and additionally human judgement, in order to reason about the

loop’s termination. As shown in the case study in Chapter 4.3, the complex LTP can serve as a

filter to find loops more likely to have ACVs.
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Table 3.1 JDK Subsystems.
Subsystems APIs belonging to this subsystem
JavaCore java.util, java.lang
Hardware javax.sound, javax.sound.midi
IO java.nio, java.io
Network java.net, javax.net, java.rmi
RMI org.omg.CORBA, javax.rmi.CORBA
Database javax.sql, javax.sql
Log java.util.logging
Serialization javax.xml.bind, javax.xml.ws.soap
Compression java.util.jar, java.util.zip
UI java.applet, java.awt, javax.swing
Introspection java.lang.reflect, java.lang.invoke
Iterables java.util.List, java.util.Vector etc.
Garbage Collection java.lang.ref
Security java.security, javax.security etc.
Crypto javax.crypto
Math java.math
Random java.util.Random etc.
Threading java.util.concurrent etc.
Data Structure java.beans, java.text etc.

3.3.4 Subsystem Interactions

In addition to knowing how a loop terminates, it is important to have knowledge about the APIs

invoked inside a loop’s body in order to develop a vulnerability hypothesis. The analysts can deduce

the high level functionality of the loop using the knowledge about the invoked APIs. We classify

the APIs into 19 categories corresponding to JDK subsystems. Table 3.1 lists the subsystems and

examples of packages they contain.

3.3.5 Automatic generation of loop catalog

We use the Atlas program analysis platform [38] to generate a queryable, directed multi-

attributed program graph whose nodes and edges represent program artifacts and their relationships

for a given application. We use an implementation of the DLI [39] algorithm to identify all loops in

the application.

Next, we compute the properties related to loop termination (properties of TDG, LPCG, and

LTPs) and operations in the loop body (subsystem interactions) for each loop in a given application.
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The computed information is saved as a CSV file, which can be used by the analyst as a loop catalog.

This includes monotonicity of a loop, the LTPs matched, size of the TDG and LPCG, number of

callsites in loop body and their distribution among control flow paths, and subsystem interactions.

The analyst can then apply filters with one or more criteria and/or rank the loops in order to select

or eliminate loops.

The loop characteristics saved in the loop catalog are also saved as appropriate node and edge

attributes in the Atlas program graph. This allows the analyst to filter and query specific loops and

perform on-demand visual inspection of program artifacts and properties of loops selected through

a query.

3.4 Visual Querying for Interactive Loop Analysis

Visual querying mechanisms aid interactive analysis of loops in order to hypothesize ACVs. We

have designed two Smart Views for interactive visualization to scrutinize loops for ACVs. These

Smart Views are based on the two loop abstractions described in Section 3.2. We have also created

a filtering framework that enables custom selection of loops using specified constraints on loop

characteristics.

3.4.1 Smart Views

A Smart View is designed to display and query a graph abstraction relevant to solving a partic-

ular problem. It is an interactive visualization mechanism, and offers the following: (a) a menu to

select a type of software analysis to produce the graph abstraction, (b) invocation of the analysis by

clicking on a source code object to which the analysis is applicable, (c) an interactive visualization

of the analysis result. Atlas [38] comes with basic Smart Views for call graphs, control flow graphs,

data flow graphs, etc., and provides APIs to create customized Smart Views.

Smart Views display graph abstractions and incorporate different ways to interact with those

graphs: (1) a capability to zoom in and out, (2) a capability for incremental viewing of a graph,

(3) several layouts (e.g. hierarchical, orthogonal) to display the graphical result of the analysis,
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(4) search facility to look for a node or an edge by their name, (5) saving the graphical result as an

image file for offline use, (6) two-way source correspondence between the elements of the displayed

graph and the corresponding source code, (7) background colors and border styles to highlight the

nodes and edges. Smart Views integrate seamlessly with other Smart Views to enable composition

of analyses where one Smart View generates a graph that is used as an input for another Smart

View. Additionally, Smart Views can be composed with the filtering framework (Section 3.4.2) and

ad-hoc Atlas queries [38].

Termination Data Flow Smart View: Displays the Termination Dependence Graph (TDG)

(Section 3.2) for a selected loop header. It enables incremental visualization of a large and complex

TDG starting with the TDG roots. It provides color coding of nodes to ease comprehension: Red

for the termination conditions, Gray for roots of the TDG, and Green for callsites that point to

inter-procedural data flow that affect termination.

Use Case: It serves as evidence to scrutinize whether and how a loop terminates. Especially, it can

save significant time and effort to comprehend inter-procedural dependence of a loop termination

condition.

Loop Projected Control Flow Smart View: Displays the Loop Projected Control Graph

(LPCG) (Section 3.2) for a selected loop header. It extends an LPCG by including control flow

paths to callsites that may not affect the termination but could still create an ACV through a

resource-intensive call. It provides the following color coding of nodes: Yellow for the selected loop

header, various shades of Blue to display the loop body of nested loops with respect to their nesting

depths (darker shades of Blue indicate loops nested deeper), Red for termination conditions (and

Cyan for other branch conditions), Green for callsites, and Magenta or Gray respectively for the

increment or decrement operators or API calls. The control flow edges are displayed as continuous

lines, and event flow edges as dashed lines. As described in [37], the event flow edges as the induced

edges to show the control flow reachability from one PCG node to another.

Use Case: It facilitates comprehension through display of paths that influence termination. With
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a separate display it shows paths with callsites that could create an ACV with a resource-intensive

call. It also helps scrutinize loops for monotonicity.

3.4.2 Loop Filters

We have developed a filtering framework to select loops matching a combination of the loop

characteristics from the loop catalog. The framework currently supports the creation of custom

filters by adding constraints on String, primitive and boolean properties. An example of a boolean

property is monotonicity – a loop is either monotonic or not; and the two possible constraints based

on this property would be “monotonic: true” and “monotonic: false”. The nesting depth of a loop

is an example of a primitive (integer) property. For example, the constraint “nesting-depth greater

than 4” selects all loops having nesting depth of 5 or above within the method. A filter consists

of a conjunction of constraints, i.e., a filter consisting of the above two constraints would select

monotonic loops with nesting depth over 4. The filtering framework also allows analysts to fork a

filter, i.e., create a new filter that includes a subset of the constraints added to an existing filter.

This is useful for the analyst to explore multiple hypotheses related to ACVs in the application

simultaneously.

We provide filters based on following six characteristics: 1) Reachability, 2) Subsystem Interac-

tion, 3) Presence of branch conditions that affect the resource consumption of the loop, 4) LTPs,

5) Monotonicity, 6) Nesting Depth. We describe first three filters here. The filtering framework

currently supports selection of loops, but is extensible and in the future could support selection of

other artifacts such as methods or types based on their properties relevant to finding ACVs.

Reachability Filter: This filter selects the loops that are reachable from user input. It supports

two boolean properties to enable selection of loops reachable from all the main methods (if sup-

ported) and loops reachable from web application handlers such as HTTP request handlers.

Use Case: For a loop to cause an ACV, the input provided by attacker must reach the loop to

selectively trigger an execution path or influence its termination. This filter is useful to select the

loops which an attacker can influence.
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Subsystem Interaction Filter: This filter selects the loops that interact with a given subsystem

(see Section 3.3.4). It supports a String property that specifies a subsystem and enables selection

of loops which interact with the specified subsystem.

Use Case: Domain knowledge often provides insights to the analyst about how the APIs invoked

in loops can cause ACVs. For example, thread creation within a loop indicates the possibility of

an ACV due to exhaustion of stack memory. To select loops that may admit this possibility, the

analyst may choose to apply this filter with the String property ’THREADING_SUBSYSTEM’.

Differential Branch Filter: This filter selects loops containing a differential branch, i.e., a branch

condition that affects the loop’s consumption of space or time. For example, a branch condition

which determines the size of the array being allocated in a loop is a differential branch in the

loop. Differential branches are interesting from two perspectives: 1) operations governed by the

differential branch can potentially cause an ACV e.g., the branch governs file I/O operations, 2) the

differential branch is governed by a parameter controlled by the attacker such as the size of a

collection provided by the attacker. We support following kinds of differential branches relevant to

ACVs: 1) branches that are governed by size of a collection, 2) branches governing operations that

cause network interaction, 3) branches governing file I/O operations.

Use Case: Loops iterating over arrays or collections (e.g., sorting algorithms, matrix multiplication)

may be potentially vulnerable to ACVs if the size of the array or collection can be controlled by the

attacker. This filter is useful to find such loops when used in combination with reachability filter.
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CHAPTER 4. A TOOLBOX TO DETECT ALGORITHMIC COMPLEXITY

VULNERABILITIES

In this chapter we present DISCOVER, a toolbox to aid a human analyst in detecting algorithmic

vulnerabilities built using the approach discussed in Chapter 3. This was published in our paper

DISCOVER: detecting algorithmic complexity vulnerabilities by Payas Awadhutkar, Ganesh Ram

Santhanam, Benjamin Holland, and Suresh Kothari at the 27th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE

2019), Tallinn, Estonia, August 2019 [40]. The chapter is organized as follows, we first present an

empirical study to evaluate loop catalog, the cornerstone of DISCOVER, and then present a case

study illustrating how DISCOVER helped detect a vulnerability in a DARPA STAC challenge app.

4.1 An Empirical Study with DARPA Challenge Apps and Open Source

Software

The artifacts including loop abstractions, the loop classification, and the loop termination pat-

terns are useful if they can provide a good coverage and facilitate understanding and selection of

complex loops in real-world software. So, the purpose of this empirical study is to evaluate how well

these artifacts serve as a lens to examine and understand loops in real-world software. The evalua-

tion is done from different perspectives. The conformance of a loop to a Loop Termination Pattern

(LTP) indicates that the loop terminates according to the pattern. It is then important to evaluate

whether these patterns cover a large percentage of loops in real-world software. Abstractions create

a compact representation to manage the complexity of a loop and its properties. So, as another

perspective it is important to evaluate how significant is the simplification due to the abstraction

when it is applied to real-world software.
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This empirical study covers 18 challenge apps provided by DARPA and 4 open source libraries

(Apache Commons IO (2.4), Apache Commons Collections (4.4.0), Apache Commons Lang3 (3.3.2),

JGraphT (0.9.1)). Altogether, they include 5448 loops. While presenting the results, we refer to

the challenge app loops as C-loops and the loops from the open-source libraries as L-loops. There

are 3852 C-loops and 1596 L-loops.

4.1.1 Usefulness of Loop Termination Patterns (LTPs)

We evaluate usefulness of LTPs with respect to the following three questions about usefulness

of LTPs: (1) What percentage of loops are covered by LTPs? A large coverage is desirable for LTPs

to be considered useful in practice. (2) Among the loops covered by LTPs, what percentage of loops

are complex cases for termination? LTPs are particularly useful if they can find complex cases of

loop termination. (3) Among the complex loops covered by LTPs, what complexity characteristics

are at play? LTPs can be insightful if they reveal the complexity characteristics and the dominance

of those characteristics among the multitude of loops. We present results to answer these questions

through an empirical study.

For the first question about the coverage of loops using LTPs, we observed that 73.31% of the

C-loops and 88.30% of the L-loops are covered by LTPs. Thus, the study shows that LTPS are are

useful to prove termination of a large portion of loops in the real-world software.

For the second question about the complex cases of loops, many different factors contributing to

the complexity can be studied. We present here the results for a predominant complexity factor. It

is especially time-consuming and error-prone for the analyst to examine and understand the cases

that require inter-procedural analysis. The inter-procedural analysis can be due to multiple issues

such as loops with nesting that goes across functions, or due to an inter-procedural data flow from

input to the loop termination condition. Among the loops covered by LTPs, 86.06% of the C-loops

and 89.44% of the L-loops require inter-procedural analysis. Thus, the study shows the LTPs are

particularly useful because they are useful to prove complex cases of loop termination.
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Table 4.1 C-loops and L-loops w.r.t. number of termination conditions (TC)
#TC median 90th %ile 99th %ile max.

c-loops 1 2 6 14
l-loops 1 2 6 16

For the third question about complexity characteristics handled by the LTPs, we present results

for different attributes of the inter-procedural dependencies handled by the LTPs. The dependencies

could involve a field of an object, a parameter of a method, or a return value at a callsite. Among

the C-loops covered by LTPs with inter-procedural dependencies, 16.81% loops have dependencies

through a field of an object, 3.19% loops have dependencies through a method parameter, and 80%

have dependencies through a return value at a callsite. The corresponding percentages for the the

L-loops are respectively 11.62%, 5.67% and 82.71%.

Unlike the dependencies through a field of an object, dependencies through a return value at a

callsite are more challenging because they require an examination of the multitude of control flow

paths through the methods invoked at those callsites. Thus, LTPs are significantly useful; not only

do they find a large percentage of difficult loop termination cases, but also the cases that are quite

complex because of the need for inter-procedural analysis and the path analysis.

4.1.2 Usefulness of Loop Characterizations

Loop characterizations are helpful in bringing out various complexities associated with a loop.

We studied distribution of the loops with respect to following five characteristics in order to evalu-

ate the usefulness of loop characterization. 1) loop monotonicity, 2) number of callsites in a loop,

3) number of termination conditions of a loop, 4) number of control flow paths in a loop, 5) cyclo-

matic complexity of a loop. Collectively, these characterizations help the analyst to isolate complex

loops for further scrutiny.

Let us discuss empirical study results that show usefulness of loop characterizations.

Loop Monotonicity: Monotonicity is an indicator of loop complexity, not being monotonic in

general reflects that it is hard to show that the loop terminates. The results show that 64.3%
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Table 4.2 C-loops and L-loops w.r.t. number of paths in the loop body.
#paths median 90th %ile 99th %ile max.

c-loops 1 6 72.7 229432
l-loops 1 3 21 324

C-loops and 55.1% L-loops are monotonic. This indicates that monotonic loops are more prevalent

than non-monotonic loops and hence can be used as a effective filtering mechanism.

Number of Callsites in Loops: The presence of multiple callsites makes it difficult to reason

about loop behavior. The results show that 18.4% C-loops and 30.8% L-loops do not contain any

callsites. This indicates inter-procedural analysis is needed to reason about a majority of the loops.

Number of Terminating Conditions: The number of terminations conditions can be useful

as loops with significantly large number of termination conditions are generally difficult to reason

about. The Table 4.1 shows the median, 90th percentile, 99th percentile, and the maximum with

respect to the number of termination conditions per loop. For both the C-loops and L-loops, 90%

of loops have at most two termination conditions and 99% of loops have six or fewer termination

conditions. However, a few loops have a large number of termination conditions. One C-loop has

14 termination conditions, and one L-loop has 16 termination conditions.

Number of Control Flow Paths: A large number of control paths indicate a large number of

different behaviors, which makes it difficult to reason about a loop’s termination. The Table 4.2

shows the median, 90th percentile, 99th percentile, and the maximum with respect to the number

of control flow paths per loop. For both the C-loops and L-loops, 50% of loops have one path. The

90th and 99th percentile values are considerably higher 6 and 72 for the C-loops compared to 3 and

21 for the L-loops. One C-loop has 229432 paths, and one L-loop has 324 paths. Thus, the C-loop

collection has a significantly large percentage of loops with a large number of control flow paths

compared to the L-loop collection.
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Table 4.3 C-loops and L-loops w.r.t. cyclomatic complexity.
Cyclomatic median 90th %ile 99th %ile max.

c-loops 3 14 38 59
l-loops 3 7 16.5 30

Cyclomatic Complexity: As a comparison to our other loop complexity measures we study the

cyclomatic complexity [41], which is a quantitative measure of the number of linearly independent

paths through a program’s source code, computed using the control flow graph. The cyclomatic

complexity distribution shown in Table 4.3 is computed by using the control flow graph for each

loop. The path metric in Table4.2 is also computed using the same set of graphs. The cyclomatic

complexity is an approximation of our path metric.

4.1.3 Usefulness of Abstractions

To detect ACVs, the analyst must comprehend complex loop behaviors including loop termi-

nation, whether the termination is affected by input, the multitude of control flow paths with

behaviors relevant to ACVs, and the paths with differential behaviors. Abstractions are intended

to create compact representations of loops with the goal of simplifying the task of comprehending

loop behaviors and enabling efficient automated analysis to characterize loops. The usefulness of

these abstractions should be measured by the compactness they can achieve while maintaining the

information essential to these behaviors.

The abstractions capture and represent the behavior information through graphs. Using V +E,

as the size of a graph where V and E are respectively the number of nodes and the number of edges,

we measure the compactness by comparing the graph size for the original program graph compared

to the abstraction graph. We use the TDG the size of the data flow graph from which the TDG is

derived, and we use for LPCG the size of the control flow graph from which the LPCG is derived.

The results computed as averages are as follows:

• For each C-loop the original data flow graph is 4.3 times bigger than the TDG. For each L-loop

the original data flow graph is 2.3 times bigger than the TDG.
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• For each C-loop the original control flow graph is 2.8 times bigger than the LPCG. For each L-loop

the original control flow graph is 1.5 times bigger than the LPCG.

The significantly higher reductions for the C-loops indicate that the developers of the challenge

apps may have introduced artificial complexity to make it difficult to locate the vulnerable code

segments. However, the abstractions can remove the irrelevant complexity.

We studied the correlation between the number of termination conditions of a loop and the

percentage compaction achieved by the TDG and LPCG. The correlation coefficient between the

reduction achieved by the TDG and the number of terminating conditions is 0.04 and the correlation

coefficient between the reduction achieved by the LPCG and the number of termination conditions is

-0.07. Thus, the compaction achieved by these abstractions has very little correlation to the number

of termination conditions. Similarly, we found that the compaction has very little correlation to the

number of paths. This is expected because compaction depends on the number of relevant nodes

and that number is not correlated to either the number of termination conditions or the number of

paths.

4.2 DISCOVER Workflow

Detection of ACVs using DISCOVER can be described in three phases:

1. Automated Loop Characterization: In the first phase, the analyst runs the automated loop

analysis which characterizes every loop in the app using several pre-defined characterizations.

These characterizations are computed using two loop abstractions: Termination Dependence

Graph (TDG) and Loop Projected Control Graph (LPCG). The output of this phase is a Loop

Catalog with their characterization. The details of this phase are described in our previous

work [27].

2. Automated Filtering of Loops: ACVs are typically rooted in loops as loops are often the limiting

factor of the computational complexity of the program. The Loop Catalog is designed to select
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loops more likely to contain an ACV. The analyst combines the information captured by the

catalog with a high-level understanding of the app to narrow down the possibilities of ACVs.

3. Interactive Audit of filtered loops: Analyst then makes use of the interactive capabilities of

DISCOVER to audit the filtered loops and hypothesizes the presence of ACV, if any. This

hypothesis can be checked using dynamic analysis techniques. With this workflow, our team was

ranked to have the most accurate analysis on the final two competitive evaluations of the STAC

program.

4.3 Case study of ACV Detection

We present a case study to illustrate how to detect ACVs using DISCOVER. We will be using

an app called Gabfeed_3, which was developed as a challenge for the STAC program. The source

code of the app, along with other challenge apps, is available on GitHub [12]. Gabfeed_3 is a web

forum software which allows users to post messages on a server and search the posted messages. The

messages are stored in sorted order. The server uses a custom merge sort for sorting messages on

the backend. We received bytecode for the app (not the source code), which we converted to Jimple,

an intermediate representation of Java bytecode. We use the Jimple code for analysis. Gabfeed_3

consists of 23, 882 lines of Jimple.

Background: DARPA created several challenge apps in order to evaluate the tools developed in

the STAC program. Let’s first shed some light on these challenge apps. DARPA contracted security

professionals to develop apps containing vulnerabilities based on real-world software. These apps

are fairly large and the vulnerable code is hardened against detection techniques by obfuscating the

code. Each app comes with a description of a vulnerability and analysts are tasked with detecting

vulnerabilities that match the given description. This description includes the type of resource

consumption (space or time), the threshold for resource consumption, and the constraints on input

size. In order to be considered a valid ACV, the detected ACV by a tool must exceed the threshold

while staying within the input constraints. Most of these apps are already publicly available on

GitHub [12] and DARPA plans to release the remaining apps in the near future.
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4.3.1 Phase 1: Generate Loop Catalog

DISCOVER automatically characterized every loop in the app and cataloged every loop in the

Loop Catalog. Loop Catalog also includes the information captured by the loop characterizations.

Gabfeed_3 consists of 112 loops.

4.3.2 Phase 2: Filtering Loops

The goal is to isolate a subset of loops that are likely to contain an ACV. This filtering is done

using the information captured by the Loop Catalog and a high-level understanding of the app.

In this case study, we employed the following sequence of criteria to filter loops.

• Reachable Loops: In order to trigger the vulnerability, the loop must be reachable from the

Control Flow Entry points of the app. These entry points were identified based on the domain

knowledge of the app. Additionally, the attacker input to these entry points must also reach the

loop body. Using loop catalog, the analyst selects only those loops which are reachable from the

input to the app. # Loops Retained: 75/112

• Network Interactions: Gabfeed_3 is a web application. Hence, the inputs provided to the app

are processed using network APIs. Thus, the loop must make use of the network subsystem to

process the input. Hence, the analyst selects only those loops which interact with the network

subsystem. # Loops Retained: 35/112

• Loop Monotonicity: Monotonic Loops are loops with simple termination logic and are typically

not likely to contain an ACV. Thus, the analyst selects only non-monotonic loops. # Loops

Retained: 14/112

• Loop Termination Pattern: Loops whose termination is dependent on well-understood APIs have

a well-understood upper bound and are not likely to contain ACVs. Gabfeed_3 has 5 such loops

which are used to read from files using readline(...) API. Loop Catalog captures this information

by identifying the loop termination pattern. Analyst focuses on the remaining loops and discards

these 5 loops. # Loops Retained: 9/112
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At this point, the analyst decides to interactively scrutinize these 9 loops.

4.3.3 Phase 3: Interactive Audit

Loop Catalog reveals that these 9 loops are neatly separated in three different components of

Gabfeed_3, namely Sorter, HashMap, and TreeNode. The analyst used LPCG smart view to look

at LPCGs of these 9 loops. The goal was to search for paths within these loops which may lead

to asymmetric consumption of resources. We discovered that out of the 9 loops, the loop in the

method Sorter.changingSort(...) has a peculiar LPCG. Its LPCG is shown in Figure 4.1. The LPCG

reveals the presence of a differential branch. This branch (zoomed in Figure 4.1) creates asymmetry

as it has only one path with a callsite. This callsite invokes the method Sorter.mergeHelper(...)

which handles the merge operation of the sort. This conditional merging is suspicious and further

inspection reveals that there is also an unconditional merge before the suspicious callsite. Turns

out, that if the number of messages is multiple 8 then this sorting algorithm merges every pair of

sublists twice. The second merge is redundant and only adds to the cost of the sort. Thus, analyst

hypothesized that if the attacker makes the number of posted messages multiple of 8, then the server

is going to take a long time to sort the posted messages. This will increase the response time to

any queries made for the posted messages by benign users. Using dynamic analysis, this hypothesis

was proved.
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Figure 4.1 LPCG of vulnerable loop showing asymmetric behavior



www.manaraa.com

33

CHAPTER 5. SOFTWARE ASSURANCE

5.1 Introduction

Software verification is an important but daunting task. The challenge stems from not just

the complexity of modern software but also the sheer volume of it. For example, the Linux kernel

which forms the backbone of most of the modern technology ranging from web servers, phones,

desktops to mission critical components such as processors in aircrafts, is over 20 million lines of

code (MLOC). Cyber-physical and embedded systems are becoming increasingly dependent on the

software and vulnerabilities in the software can lead to catastrophic disasters. Hence, the ability to

verify software efficiently and accurately has become critically important.

Software failures have caused serious accidents that resulted in death, injury, and large financial

losses. Without intervention, the increasingly pervasive use of software may bring more frequent

and more serious accidents. The National Academy of Sciences report on Software for Dependable

Systems [42] points out that existing certification schemes that are intended to ensure the depend-

ability of software have a mixed record; some are largely ineffective, and some are counterproductive.

The National Academy Report [42] notes that conventional certification techniques based on confor-

mance to development processes and testing cannot guarantee software compliance with critically

important safety and security properties.

DO-178C [43, 44] and UK Def Stan 00-56 [45] are well-known certification standards. Both

standards require the submission of a reasoned justification as to why and how the verification and

validation techniques achieve the certification goals. Safety arguments are typically communicated

in existing safety cases through free-form text. For example, a safety case in UK Def Stan 00-56

is defined as: “A structured argument, supported by a body of evidence that provides a compelling,

comprehensible and valid case that a system is safe for a given application in a given operating

environment.”
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Unlike DO-178C, where testing evidence takes the front seat, UK Def Stan 00-56 gives precedence

to analytical evidence. Nonetheless, in order to obtain credit for the use of mathematical analysis

as the primary means for compliance, the mathematical methods should be accompanied with

supporting evidence for reasoned justification. In practice, testing is the dominant technique for

producing reasoned justification. All test cases are generated from the requirements. The quality

of testing is judged against two coverage metrics: requirements coverage and structural coverage.

While the first type of coverage determines which requirements were not tested, the latter determines

how well the test cases exercised the code structure. The general approach that one must take in

constructing an argument for replacing testing with another technology is to show how to argue

that the evidence produced by the replacement technology is at least as convincing as the evidence

produced by testing [46].

Security vulnerabilities can undermine the case made for dependability properties in software.

The dependability properties must therefore account explicitly for security risks that might com-

promise its other aspects. It is also important to ensure that security certifications give meaningful

assurance of resistance to attacks. Testing in general does not suffice for assuring software security,

because even the largest test suites typically used do not exercise enough paths to provide evidence

that the software is free from vulnerabilities. New security certification regimes are needed that can

provide confidence that most attacks against certified products or systems will fail. For that, these

regimes should be amenable to human scrutiny.

In this chapter, we discuss key ideas from our work Insights for Practicing Engineers from a

Formal Verification Study of the Linux Kernel [47] by Suresh Kothari, Payas Awadhutkar, and

Ahmed Tamrawi, published at Formal Verification for Practicing Engineers (FVPE) hosted at the

27th International Symposium on Software Reliability Engineering (ISSRE 2016), Ottawa, Canada,

October 2016. These ideas served as the motivation for the work described in rest of the chapters.

These ideas are inspired by the visionary paper: “Social Processes and Proofs of Theorems” by De

Millo, Perlis (1st Turing Award, 1966) and Lipton [5].



www.manaraa.com

35

5.2 A Visionary Paper

In 1979, Richard De Millo, Richard Lipton, and Alan Perlis published the visionary paper “Social

Processes and Proofs of Theorems” [5]. The paper is about what is a proof and the purpose it serves

in mathematics. The authors argue that formal verification programs do no play the same role as

the proofs do in mathematics and discuss the qualities of a good proof. A brief summary of the

central argument of the paper is as follows:

• Mechanisms that make engineering and mathematics really work are obscured in the fruitless

search for perfect verifiability. In mathematics, the aim is to increase the human confidence in

the correctness of a theorem. Nor does the proof settle the matter, contrary to what its name

suggests, a proof is only one step in the direction of confidence. It is a social process that

determines whether mathematicians feel confident about a theorem. Verification is nothing

but a model of believability. It cannot be a model where proofs are accepted in blind faith.

A proof should be amenable to human scrutiny.

• A good proof is one that makes us wiser. With formal verification, we know that our program

is formally, correct. We do not know, however, to what extent it is reliable, dependable, safe;

We do not know within what limits it will work; we do not know what happens when it exceeds

those limits. The verification must provide knowledge that improves our practice.

Perfect verifiability is clearly not possible. The question is what would help to establish more

trust in the correctness of formal verification. Because of the low-level at which formal verification

operates, the formal proofs are extremely long and not amenable to human understanding. In

mathematics, a proof serves the purpose of increasing a human’s confidence in the correctness of

a theorem. Perlis calls it “a social process that determines whether mathematicians feel confident

about a theorem”. Perlis argues for a social process to increase confidence in the verification results.

That calls for verification proofs amenable to human scrutiny.

As the paper [5] notes, a good proof is one that makes us wiser. The paper makes distinction

between formal verification proofs and the proofs used in mathematics and points to the intrinsic
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problem that formal proofs do not make us wiser about the software. A good proof must provide

knowledge to improve software engineering practice. It should help in determining the extent to

which the verified program is safe. It should help in determining the limits of the program’s

reliability. It should help in determining what happens after those limits are exceeded.

To summarize, the key idea is to advance software verification methods to produce artifacts that

make developers wiser about their software.

5.3 A Motivational Example

We undertook a verification case study to get deep insights into the state-of-the-art for formal

verification. We did the study using the Linux Driver Verification tool (LDV) [48] which has been

the top Linux device driver verification tool in the software verification competition (SVCOMP)[33].

The LDV’s developers were generous to help us with the study. We chose to study the problem of

Lock/Unlock Pairing (LUP) for the Linux kernel. In this section, we discuss an example that clearly

brings out the need to produce artifacts that enable human scrutiny of the verification process, even

when the verification instance is reported as safe.

We present an example of a complex Linux verification instance where Lock is not correctly paired

with Unlock, but LDV mistakenly verifies it as correct pairing. The PCG of a function shows that

Lock is not followed by Unlock. We expected that LDV verifier would notice it and declare it unsafe.

To our surprise, LDV has declared it a safe instance. We did a further investigation and found

that it is an unsafe instance but not for the obvious reason. Since the formal verification proof is

not revealed, it is not clear why LDV verified this instance incorrectly. This particular instance

attracted our attention because of a peculiarity exhibited by its Control Flow. In this instance,

the lock and unlock are on disjoint control flow paths in the function drxk_gate_crtl (f1) and if some

condition C = true, the lock occurs, otherwise, the unlock occurs. We hypothesized that the lock

and unlock can match if f1 is called twice, first with C = true and then with C = false. A quick

query using Atlas shows that f1 is not called directly anywhere. Thus, it is either dead code or f1

is called using a function pointer.
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Resolving the function pointers using a tool we have developed using Atlas [49], we find the

situation shown in Figure 5.1. The function tuner_attach_tda18271 (f2) calls the function f1 via

function pointer. demo_attach_drxk sets the function pointer to f1, the pointer is communicated by

parameter passing to dvb_input_attach, then to f2.

Figure 5.1 Search model for drxk_gate_crtl after resolving calls via function pointers

Recall that f1 must be called twice. The function f2 has a path on which there is a return before

the second call to f1 and thus it is a bug.

It is a mystery why LDV incorrectly verifies this instance as safe. We are not aware any program

analysis techniques that would correctly resolve the difficult-to-resolve function pointer situation

encountered in this instance. It is hard to imagine that LDV has resolved the function pointers in

this case. An analysis without resolving function pointers is more likely to lead to unsafe verdict

because the Lock and Unlock are on disjoint paths and thus it is an unsafe instance. Without access

to its proof, it is not possible to determine what goes wrong with LDV when it incorrectly verifies

this peculiar instance as safe.
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5.4 Contemporary approaches to software assurance

Now we discuss the contemporary approaches to generate artifacts which can serve the role

of a proof. Several software assurance techniques aim to generate a proof. The proof in this

context, is a series of mechanised deductive arguments that are logically sound, and are used to

establish one or more properties of a formal model of the system being analyzed [50]. Needless to

say, such techniques have helped in discovering security vulnerabilities that otherwise might have

gone undetected. Lowe [51] famously used formal methods to uncover and help fix a decades-old

security (design) flaw in the Needham-Schroeder public key protocol. There is no doubt that these

techniques improve software safety and security in general.

A popular approach is completely mechanised validation of the verification process. The ap-

proach taken involves a use of a tool that verifies a software and generates a proof that can be

checked using a proof checker. This process is referred as certification [52]. This squarely puts

the onus of assuring the correctness onto the proof checker and they must be held to a very high

standard for them to be used to verify mission-critical software. Avionics industry have developed

various certification standards, such as DO-178C [44], but these processes can be costly and are

generally riskier to implement. Ongoing research aims to improve the cost of adoption and reduce

the perceived risk to increase industry level adoption of these techniques [53, 54].

Another popular approach is to generate results which can be validated by a machine while

allowing some level of transperancy for a human. A widely used idea in these techniques is Witness

Validation [55]. Traditionally, a verification tool would report a problem by generating counterex-

ample trace(s). The traces are often tool-specific and cannot be validated by other tools. This would

generate false alarms and determining whether a counterexample is a false alarm or not is a more

often than not a tedious process [56]. Beyer, Dangl, Dietsch, and Heizmann have tried to address

this problem [55, 57]. The key contribution is to create a witness exchange format that can be used

by different tools to exchange witnesses. This allows the witness to be validated by multiple verifiers

and instill greater confidence in the correctness of the machine generated proof. Witness validation

techniques are based on the notion of model checking. Model checking is an algorithmic technique to
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verify a system description against a specification. [58, 59] A witness generated by a model checker

is typically an abstraction that captures the system description. These abstractions are typically

automata which another model checker can stepwise validate against the specification [56]. The

suggestion, if a human wishes to cross-check, is to use a visualization tool to inspect these automata

manually. The problem is that these automata can be inordinately large, encapsulating thousands

of state transitions in real-world software, which makes it practically impossible for a human to

cross-check the witness. Thus, if the system description is incorrectly captured by the model, which

again can only be assured by a human using a similar process, then the witness validation will fail

to report a false alarm; worse it may miss a vulnerability which simply cannot be allowed in a

mission-critical software.

There is a growing interest in human interpretable verification. This is visible in the recent

programs launched by DARPA for Explainable Artificial Intelligence (XAI) [60] and Computers

and Humans Exploring Software Security (CHESS) [61]. It is not a new trend by any measure and

this direction of research has been pursued for a long time. We trace the origin to the landmark

paper by DeMillo, Lipton, and, Perlis [5], discussed in Section 5.2, which argues against the notion

that software verification proofs should be viewed as a long chain of deductive logic. They point

out that a mathematical proof is constructed by elevating concepts instead of breaking down the

argument into a chain of low-level arguments. These proofs are not formal in the strictest sense;

they are exchanges that increase a human’s confidence in the correctness of the argument. David

Parnas, an early pioneer of software engineering, has been a long time supporter of this direction of

research and his work discusses possible approaches to such proofs. [62, 63].

The work that comes closest to implementing Perlis’s vision is by Ahmed Tamrawi [64]. Tamrawi

developed Projected Control Graph (PCG) [37] which works as a concise evidence that captures the

groupings of relevant CF paths required to verify a given instance. Tamrawi studied the Lock/Unlock

Pairing problem in the Linux kernel and showed that all the Lock/Unlock instances in the Linux

kernel can be verified automatically and evidence for the same can be generated. However, they

do not provide a succinct evidence that shows the data flow relation among the relevant functions
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and hence it does not work as well with Memory Leak (ML) problem in the Linux kernel where

computing the data flow relation is more challenging.



www.manaraa.com

41

CHAPTER 6. VERIFICATION EVIDENCE REQUIREMENTS

In this chapter, we discuss what program artifacts should be captured by the verification evi-

dence. We also discuss the challenges involved in computing the verification evidence.

6.1 Verification Evidence

We shall use the memory leak (ML) problem as an example to discuss the general aspects of the

verification evidence. We note that these aspects also apply to other Software Safety and Security

problems. The ML verification requires a proof for each memory allocation instance. Thus, a

verification evidence must be provided for each instance. We argue that the following program

artifacts must be captured by the evidence.

• Relevant Functions: The set of functions that are relevant in the verification proof. The set

could have one or more functions. For example, it is just one function if a memory allocation

in function f1 is followed by a memory deallocation in f1 itself, on each feasible control flow

(CF) path following the allocation. However, it could be two functions f1 and f2 if there is a

feasible CF path in f1 on which another function f2 deallocates the memory.

• Relations between Relevant Functions: The data and control relations between relevant func-

tions. For example, the control and data relations can be respectively f1 calls f2 and f1 passes

the pointer to the allocated memory to f2.

• Coverage of CF Paths: The grouping of all CF paths within each relevant function. The

grouping is for the purpose of a concise proof. The number of CF paths grows exponentially

with 2n paths with n non-nested branch conditions. The paths where the same reasoning

is applicable should be put in one group. For example, the CF paths following a memory

allocation in f1 may have three groups: (i) paths with deallocation, (ii) paths on which a
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pointer to the allocated memory is passed to f2, (iii) paths without deallocation on which the

pointer is not passed to another function.

• Path Feasibility and Relevant Conditions: The evidence must account for the path feasibility

verification in order to avoid false positives. For example, feasibility must be checked for

paths without deallocation on which the pointer is not passed to another function. It is not a

memory leak if these paths are not feasible. The evidence should include the set of conditions

relevant for checking the feasibility of a path.

• Graphical Notation: In order to enable human scrutiny of the verification process, the verifi-

cation evidence should be communicated to a human in a format that the human can com-

prehend. A Graph is a suitable abstraction that can be visualized by a human to comprehend

the verification evidence. The evidence should have a graphical notation which represents the

artifacts described in this section as nodes and edges of a Graph.

6.2 Fundamental Challenges of Software Verification

There are two fundamental challenges which makes software verification difficult - 1) Control

Flow Challenge: Exponential Number of paths, 2) Data Flow Challenge: Backward Data Flow due

to Pointers. These are also the challenges involved in computing the verification evidence.

6.2.1 Control Flow Challenge

In order to verify a software safety or security property, each control flow path in the software

must be analyzed to verify that the property holds true. If it does not then a path-feasibility check

can be performed. Verification evidence must capture all the relevant control paths and group them

for conciseness. It should also capture the relevant branch conditions required for the feasibility

check. The fundamental challenge presented by Control Flow is that the number of behaviors can

be astronomically large. The primary cause of this difficulty is branch conditions and loops.
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Figure 6.1 Astronomically large number of behaviors due to loops and branches

Figure 6.1 illustrates the challenge presented by branches and loops. The number of paths is 2n

with n 2-way non-nested branch nodes. This causes an exponential growth of the number of paths in

the Control Flow Graph. Addition of loops in the mix muddles things further. First, enumerating

all the paths in presence of a loop is not possible as it is equivalent to enumerating paths in a

cyclic graph. To do that the termination bounds on the number of iterations of a loop needs to be

computed. Computing exact loop termination bound is equivalent to the halting problem [65] and

thus, undecidable. But even the use of an approximation is not going to help much.

Figure 6.1 shows a loop with n behaviors per iterations (n paths within the loop) and assumes

the loop iterates i times. This results in a total of ni behaviors. Assuming there are b non-nested

branch conditions then n = 2b. Which makes the total number of behaviors in this simple loop 2bi.

Even for a small loop with 5 branches that iterates 100 times, the number of behaviors are 2500

which is way more than the number of atoms in the universe. This challenge must be addressed in

order to complete the software verification and compute the verification evidence.

6.2.2 Data Flow Challenge

A data flow analysis is required to map the allocations with the corresponding deallocations

so that the Memory Leak (ML) problem can be solved. In general, data flow analysis enables
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computation of the relevant functions as it captures the functions which access the allocated memory.

In order to perform analysis, the pointer to the allocated memory must be tracked. This is a problem

that needs computation of Def-Use (DU) chains to track the definitions of the pointer to the allocated

memory (allocation) to their uses (deallocation). The challenge here is to address backward flow

created by pointers.

Let’s consider two cases - DU chains in absence of pointers and DU chains in presence of pointers.

1 i n t count = 0 , x ;

2 i n t p ;

3 p = count ;

4 count = 5 ;

5 x = p ;

Listing 6.1 A simple DU chain

Consider the code in Listing 6.1. Line 1 defines an integer count to be 0. This definition is killed

at line 4 and the new value is 5. But before that at line 3, p gets the old definition of count. This is

the definition that is used at line 5. Thus, the DU chain that ends at line 5 is (1,3,5). This chain

does not require to track what happens to the definition of count after line 3. Thus, one does not

need to use a worklist-style algorithm [66] and these chains can be computed efficiently.

1 i n t count = 0 , x ;

2 i n t ∗p ;

3 p = &count ;

4 count = 5 ;

5 x = ∗p ;

Listing 6.2 Backward flow due to pointers

Now consider the code in Listing 6.2. It is very similar to the code in Listing 6.1 except p is

now a pointer. At line 3, p is made to point to the variable count. Then count is redefined at line

4. At line 5, p is de-referenced and is used to define x. This time the the definition at line 4 is used

and the DU chain is (4,3,5). Note how one has to go back and forth on the control flow to compute

the DU chain in a path-sensitive manner. This is the fundamental data flow challenge introduced
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by the pointers. This problem is particularly severe in the Memory allocation-deallocation pairing

problem [64].

6.2.2.1 Pointer Chains due to Structures

This challenge is made even more complex by the use of structures. Consider the code in

listing 6.3. Lines 1-3 define a structure st that has a pointer field p. At line 6, a pointer to a

structure s is defined. At line 7, a pointer to allocated memory is stored in the field p of s. This

is the pointer that needs to be tracked and used for deallocation. Note that the pointer returned

by the function is the pointer to the parent structure. Thus, not only the pointer to the allocated

memory needs to be tracked, but the pointer to its parent structure also must be tracked.

1 typede f s t r u c t s t {

2 i n t ∗p ;

3 } s t ;

4

5 s t ∗ f oo ( ) {

6 s t ∗ s ;

7 s−>p = a l l o c ( ) ;

8 re turn s ;

9 }

Listing 6.3 Parent structure of a field also needs to be tracked

6.2.3 Related Work that address the verification challenges

Software verification problems have been studied for a long time. For literature survey, we focus

works related allocation/deallocation pairing. The existing approaches to address these problems

can be divided into two categories - static analysis techniques and dynamic analysis techniques.

There is a vast body of work [67, 68, 69, 70, 71, 72] on detecting deadlocks and memory leaks

using dynamic analysis. However, running the program multiple times to examine all possible

behaviors is prohibitively expensive, time-consuming, and it is hard to achieve complete coverage
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of all possible behaviors. Hence, static analysis techniques are crucial to complement the dynamic

analysis and testing.

There is a rich literature on static analysis tools [73, 74, 75, 76, 77, 78, 79, 80] for lock/unlock

pairing and memory allocation/deallocation pairing. Tools such as Saturn [74], LockSmith [81, 82]

have been shown to scale for older versions of the Linux kernel. But they suffer from lack of global

alias analysis and incomplete function summaries and produce high number of false alarms. Saturn

also has a limitation of detecting memory leaks of a specific type: a memory block that is allocated

in function p and is never escaped and deallocated in p is considered a memory leak. This forms

a very small subset of the instances of memory leak in a recent version of the Linux kernel. They

also take one or more days to analyze a software of the scale of the Linux kernel making them

impractical. FastCheck [83] uses guarded value-flow analysis to detect memory leaks. It is fast

but limited to analyzing allocation sites whose values escapes to (flow into) top-level pointers only.

Hence, it also is limited in applicability due to imprecisions in the data flow.

ESP [73] is a path-sensitive analysis tool that scales for large programs by merging superflous

branches leading to the same analysis state. However, its analysis for 2-event problems is neither

sound nor complete due to incomplete function summaries. Sparrow [84] is a static analysis tool

that detects memory leaks using abstract interpretation to compute function summaries. It has

been applied to small programs and it is not clear how well it scales for large code bases.

SVF [77], the modern incarnation of SABER [76, 85], is a static detector for memory leaks in

C programs. SVF is implemented using LLVM [86] as opposed to SABER, improving its usability.

It performs a sparse value flow analysis to track the pointers to the allocated objects. It does not

track the pointers which flow into the global variables. Although, SVF is the most recent memory

leak detector, it can not be applied to large code bases such as the Linux kernel due to the following

challenges: (1) SVF uses the LLVM compiler to transform the codebase into the SSA, which does

not scale well for the Linux kernel. (2) The sparse value-flow analysis used by the SVF is based

off Andersen’s pointer analysis. [66]. Andersen’s algorithm has been extensively studied over the

years and it is hard to scale to large code bases due to its O(n3) computational complexity. SVF’s
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pointer analysis might be improved by mixing it with unification-based analyses [87, 88], however

that will drastically affect detection accuracy [89].

The best rated tool for verifying Linux is Linux Driver Verification (LDV) project [48]. LDV uses

the BLAST [90] and has successfully found several bugs in the Linux kernel. Test cases generated

by LDV are even used as regression tests by other tools such as CPAChecker [75], another static

analysis tool used for memory allocation/deallocation pairing. LDV is a very complex tool and

setting up LDV to run on a linux kernel is not straight forward. Secondly, LDV does not produce

a verification evidence that can be checked by a human and hence it is difficult to validate LDV

results. In fact, we found a bug in the Linux kernel which was verified as safe by LDV [91].

Apart from LDV, M-SAP [64] is the only other known work to have undertaken an empirical

study of the Linux kernel and is known to have scaled to the size of the Linux kernel. M-SAP suffers

from inaccuracies in its data flow and as a result, cannot verify every instance in the Linux kernel.
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CHAPTER 7. A NOVEL APPROACH TO COMPUTING VERIFICATION

EVIDENCE

In this chapter, we describe our approach to computing verification evidence. We first describe

how the fundamental challenges of software verification described in Section 6.2 are addressed. Then,

we discuss a novel abstraction, Evidence Graph that succinctly captures the verification evidence

and can be used to prove the verification. We illustrate our approach using the Lock/Unlock and

Memory Leak (ML) instances.

7.1 Addressing the Software Verification Challenges

In this section, we discuss our approach to handle the fundamental challenges described in

Section 6.2.

7.1.1 Using Regular Expressions to handle Loops

As discussed in Section 6.2.1, the challenge presented by the control flow is the explosion in

the number of behaviors due to the branch conditions and the loops. Projected Control Graph

(PCG) [37, 92] was developed primarily to tackle the growth due to the branch conditions. We use

PCG to define a homomorphism on the set of behaviors and map them to a smaller set of behaviors

where only the statements relevant to the verification task are retained.

To account for the loop, we make use of regular expressions to capture the loop behaviors. This

approach is inspired from the classic work of Robert Endre Tarjan [93, 94]. Tarjan showed how

regular expressions can be used to accurately capture all the behaviors in a loop and also provides

a fast algorithm to compute the regular expression for a loop. We will now illustrate how this

approach works using an example.



www.manaraa.com

49

Listing 7.1 shows the source code for the example. It has a lock instance at line 4 and it needs

to be unlocked on every feasible execution path. The code also contains a loop which begins at line

3. C1, C2, C3 are the boolean variables that denote the condition values and can change as the

code executes.

1 i n t main ( ) {

2 i n t counter = 0 ;

3 whi le (C1) {

4 l o ck (0 ) ;

5 i f (C2) {

6 break ;

7 } e l s e {

8 unlock (0 ) ;

9 }

10 i f (C3) {

11 counter++;

12 } e l s e {

13 cont inue ;

14 }

15 }

16 unlock (0 ) ;

17 }

Listing 7.1 Example from Linux kernel to illustrate the use of regular expressions to handle

loops
Let’s first separate the behaviors of this program in three categories

1. Execution behaviors where loop iterates: There are two such behaviors (denoted using line

numbers)

(a) (2, C1(T), 4, C2(F), 8, C3(T), 11)

(b) (2, C1(T), 4, C2(F), 8, C3(F), 13)

C(T) means the condition C is true and C(F) means the condition C is false.
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2. Execution behavior where the loop breaks: There is one such behavior (2, C1(T), 4, C2(T),

6, 16)

3. Execution behavior where the loop does not iterate: There is one such behavior (2, C1(F),

16)

Let’s first count the number of behaviors if the loop executes n times. For the first n-1 iterations,

the behaviors could be either (2, C1(T), 4, C2(F), 8, C3(T), 11) or (2, C1(T), 4, C2(F), 8, C3(F),

13). The last iteration is used to exit the loop. This could be either (2, C1(F), 16) which is the

normal exit for the loop or (2, C1(T), 4, C2(T), 6, 16) which is exit using the break. Thus, the

number of possible behaviors are 2n−1 ∗ 2 = 2n. for n iterations. This can be succinctly captured

by the regular expression

(2, (C1(T ), 4, C2(F ), 8, C3(11 + 13))∗, C1((4, C2(T ), 6) + ε), 16

The * operator is the standard regular expression operator which denotes that particular subex-

pression can execute zero or more times. ε is the empty symbol in the regular expressions. This

expression captures all possible behaviors of the code in Listing 7.1.

Verification Using Regular Expressions: Now we show how to use the regular expressions

with the PCG to perform software verification. The first step is to compute the PCG for the given

instance using lock and unlock as the relvant events. Figure 7.1 shows the computed PCG. The red

node corresponds to the lock and the green nodes correspond to the unlock. We will denote lock as

L and unlock as U for the remained of the section.

First thing to note is that the condition C3 was omitted from the PCG. This is because it has

no effect on the LU matching. The regular expression for the PCG is:

(C1(T ), L, C2(F ), U(8))∗, C1(L,C2(T ) + ε), U(16)

where U(8) and U(16) represent the unlock on line 8 and line 16 respectively. This expression

can be broken down into two subexpressions
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Figure 7.1 PCG for the instance in Listing 7.1

• Loop never iterates - (C1(L,C2(T ) + ε), U(16). This shows that either L never happens (C1 =

F) or it is matched with U(16). Hence, there is no bug.

• Loop iterates at least once - Then it is equivalent to the expression where loop iterates exactly

once and then exits on the next iteration - C1(T ), L, C2(F ), U(8), C1(L,C2(T ) + ε), U(16).

This shows that during the iteration, L is matched with U(8) and then it is matched with U(16).

Thus, on every possible execution behavior L is matched by a U. This also implies that there is

no need for feasibility check and the verification is complete.

7.1.2 Handling Backward Flow

As discussed in Section 6.2.2, the fundamental challenge presented by data flow is the backward

flow created by pointers. We handle the backward flow as follows.

We first compute Data Dependence Graph (DDG) using the algorithm by Ferrante, Ottenstein,

Warren (F.O.W.) [26]. This algorithm computes DDG in nearly linear time using Lengauer-Tarjan

algorithm to compute dominators [95]. The DDG computed by the F.O.W. algorithm needs to be

refined to address the backward flows and needs to made interprocedural. The refinements we apply

are as follows:
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• For every edge in DDG, associate the variable the definition of which flowed across that edge.

This achieved using the node attributes in the Atlas framework.

• If the variable is a pointer, then compute the variables that the pointer can point to. We use

the path-sensitive Andersen-style points-to analysis implemented by Atlas [38] to compute the

points-to sets. For each non-pointer variable in the points-to set, connect the new definition

to directly to the non-pointer variable by adding a new edge. This resolves the pointer chain

and makes the tracking easier.

• If the variable being defined is a field of a structure then add an edge from the definition of the

structure to the definition of the field. This links the field definitions to the parent structure

definitions, thus taking care of the other complication discussed in Section 6.2.2.1

• Add an edge from the callsite to each node in the function that was called where the definition

of the parameter is used. This allows tracking of parameters.

• Add an edge from each return statement in the function to each callsite to the function if a

variable was returned.

• If the definition being used is of a global variable then mark the edge to indicate it involves

the use of a global variable.

These refinements allow us to track the pointers to the allocated memory and enable verification

of the memory allocation-deallocation pairing problem in the Linux kernel. Figure 7.2 shows the

UD chains computed using the our refined DDG for the example in Listing 6.2. It shows exactly

two definitions reaching the definition of x. The first definition is the definition of the pointer p.

This would be computed by the F.O.W. algorithm. After that, the analyzer will have to figure out

the correct live definition of count using a path-sensitive analysis. Atlas’s path-sensitive data flow

analyzer is used to resolve the pointer flow and to save the traversal computation cost during the

traversal of the DDG, a direct link from the resolved definition is added to the use. Thus, if we
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Figure 7.2 DDG refinements to resolve the backward flow

were tracking the value of the variable count, we will pay the cost of traversing just one edge to find

its use.

The actual tracking to solve ML problem is done as follows,

• Compute the DDG for every function in the software. This is a one-time cost at the beginning

of the analysis.

• Given an ML instance A to be verified, begin traversal of the DDG at the node for A. Traverse

the DDG in the forward direction until a deallocation site D is discovered or a leaf in the DDG

is encountered. Traverse only those edges along which the definition of A flows.

• If at any point, there is an incoming edge from a global variable (marked while creating DDG),

then include the global variable in the analysis and traverse the DDG edges originating at the

global variable along which the definition of A flows.

• If the definition of A is linked to a parent structure, then include the parent structure definition

in the analysis and traverse the DDG edges originating at the definition of the parent structure

along which the either definition of A flows or the definition of the parent structure flows.

• The end result will be the set of deallocation sites D that match with the given instance A. Use

PCG and regular expressions to verify that the match is present along every feasible execution

control flow path.
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7.2 Evidence Graph

In this section, we describe a novel certification evidence (CE) schema designed to justify the

verification proof in a succinct visual form to make it easy to comprehend and cross-check the proof.

The ML verification requires a proof for each memory allocation instance. Thus, the CE schema

serves to provide the verification evidence for each instance. We use this schema to compute a novel

abstraction, Evidence Graph that satisfies all the requirements described in Chapter 6 that can be

used to prove the ML verification.

7.2.1 A Graphical Notation for the CE Schema

We present a graphical notation as a succinct visual medium to communicate the certification

evidence. We shall use the term macro evidence for the first two categories of evidence (relevant

functions and relations between relevant functions) and the term micro evidence for the last two

categories of evidence (coverage of CF paths and path feasibility).

The CE schema depicts the relevant functions as nodes and interactions between the functions

as edges. Suppose the interaction is: function f passes a pointer to the allocated memory as a

parameter to another function g. Then, the schema has an edge from f to g with label par to denote

relevant parameter passing.

The CE schema is extensive enough to describe a variety of data and control flow interactions

between functions. It incorporates all three modes of communicating data between functions: (i)

passed as a parameter, (ii) passed as return value, and (iii) shared through a global variable. It

incorporates all three modes for passing control from one function to another: (a) one function calls

another function by name, (b) one function calls another function using a function pointer, and (c)

two functions work asynchronously and so the control passes from one function to another because

of context switching.

Unification of Macro and Micro Evidence: The micro evidence shows that the control flow

paths within a function f are grouped into different groups for the purpose of verification. The macro

evidence shows interactions of f with other functions for the purpose of verification. Consider the
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following scenario that calls for unification of macro and micro evidence. Start with function f that

allocates memory. The control flow paths in function f fall into three groups: a group of control

paths that include deallocation, a group of control paths that pass a pointer to the allocated memory

to function g, and a third group of control paths that do not have either, i.e. they do not include

deallocation and they do not communicate the pointer to allocated memory to any other function.

We need to represent succinctly the grouping of paths (micro evidence) and the relevant passing of

parameter (macro evidence).

Figure 7.3 Function f: control flow paths fall into three groups

Let us now discuss how the micro and macro evidence are unified to communicate the above

scenario. As shown in Figure 7.3, the functions f and g are denoted by nodes. The three outgoing

edges from f correspond to the three groups of control paths. An edge from f to g with label par

denotes the relevant parameter passing along a group of paths. An edge from f to deallocation

denotes the matching deallocation along a group of paths. An edge from f with label PFC denotes

that a path feasibility check (PFC) is performed along a group of paths.

7.2.2 Evidence for a Real-World Example Using the CE Schema

We illustrate the use of CE schema as a verification proof for an ML instance from the XINU

operating system which is about 10,000 lines of code [96]. In XINU getbuf and freebuf are respectively

the calls to allocate and deallocate memory. The memory in dgwrite is allocated by the getbuf call.

We will use the CE schema to present evidence that every feasible CF path following this allocation

in dgwrite has a corresponding freebuf call.

CE Evidence: As Figure 7.4 illustrates, the problem starts with memory allocation instance (getbuf

call) in function dgwrite. The paths in dgwrite fall into two groups: paths with matching freebuf, and
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Figure 7.4 Evidence Using the CE Schema for the Allocation Instance in dgwrite

paths on which the pointer to the allocated memory is passed as a parameter to function udpsend.

The parameter passing is shown by an edge from dgwrite to udpsend with the edge label par.

As per the CE evidence shown in Figure 7.4, the verification has taken the following steps:

1. Paths in udpsend fall into one group and the pointer to the allocated memory is passed as a

parameter from udpsend to ipsend.

2. Paths in ipsend fall into one group and the pointer to the allocated memory is passed as a

parameter from ipsend to route.

3. Paths in route fall into two groups. The pointer to the allocated memory is passed as a

parameter from route to write along one group of paths and there is a matching freebuf along

the other group of paths.
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4. Paths in write fall into one group and the pointer to the allocated memory is passed as a

parameter from write to ethwrite. write calls ethwrite using a function pointer. The function

pointer call is denoted by the edge label fpc.

5. Paths in ethwrite fall into one group and the pointer to the allocated memory is passed as a

parameter from ethwrite to ethwstrt.

6. Paths in ethwstrt fall into one group and the pointer to the allocated memory is assigned to

the global variable dcmptr. The function ethinter reads that global variable.

7. Paths in ethinter fall into five groups. One group of paths have a matching freebuf. The other

four groups of paths do not have a matching freebuf and the pointer to the allocated memory

is not communicated to any other function. These four group of paths require path feasibility

checks as donated by the edge label PFC.

Path Feasibility Check: We use Projected Control Graph (PCG) [92] as a compact and easy-to-

understand abstraction to capture micro evidence; it captures the relevant behaviors and relevant

conditions for feasibility check. A control flow graph (CFG) can have many irrelevant conditions

and a multitude of paths with identical relevant behavior for the purpose of verification, while the

PCG has only one path per relevant behavior and captures only the relevant conditions.

The PCG for ethinter is shown in Figure 7.5(a); it shows six groups of paths. Two groups

of paths have a matching freebuf (collapsed into one in Figure 7.4) and the other four groups of

paths requiring feasibility checks are numbered 1 to 4 in Figure 7.5(a). The conditions relevant

for checking path feasibility are captured by the PCG. An equivalent representation of the path

feasibility conditions using a tabular notation is shown in Figure 7.5(b). The four groups of paths,

all require feasibility checks but are still maintained as distinct paths because their corresponding

relevant conditions are not the same and thus the feasibility checks are actually different.

Data and control relations between functions: This example brings out two out of the three data

relations between functions: parameter passing and global variables. It also illustrates all three

control relations between functions: a function is called by name, a function is called using a function
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Figure 7.5 Micro-Evidence for ethinter

pointer, and asynchronous control between two functions (the control is passed from ethwstrt to

ethinter by context-switch; ethinter is an interrupt-driven function).

7.3 Applicability of the CE Schema

The CE schema is well-suited for verifying safety and security properties, especially 2-event

properties. Many safety and security properties are similar in terms of analysis and verification

challenges they pose. A typical safety property can be stated as: verify that an event e1(O) is

followed by an event e2(O) on every feasible execution path, where the two events are operations on

the same object O (e.g., lock must be followed by unlock). A typical security property can be stated

as: verify that an event e1(O) is not followed by an event e2(O) on every feasible execution path,
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where the two events are operations on the same object O. For example, a confidentiality property

is: a sensitive source must not be followed by a malicious sink on any feasible execution path.

As a general application, the CE schema is useful for presenting evidence for verifying a property

defined by a finite state machine (FSM): verify on every feasible CF path, the occurrence of events

that follow the acceptability test defined by a FSM.

7.3.1 Evidence Graph: Implementation of CE Schema

We implemented the CE Schema using Atlas [38]. The evidence presented in form of a graph

abstraction, Evidence Graph. Evidence Graph constitutes of the following,

1. The allocation instance

2. All the DU chains that originate from the allocation instance. This captures the evidence

required to check that the data flow has been captured correctly. These chains are interproce-

dural and span across functions. They capture transfer of pointer definition via parameters,

returns, and global variables.

3. Relevant Functions: These are captured by the DU chains and are included in the Evidence

Graph as containers for the control flow nodes.

4. If there are paths in a function where the pointer to the allocated memory is not used, then

they are shown by an edge to a node denoted by ⊥. This captures paths on which the

pointer to the allocated memory does not reach a deallocation site and indicates the need

for a path-feasibility check. This is achieved by computing a PCG for each of the captured

functions.

Figure 7.6 shows the evidence graph for the XINU instance of ML. The red colored node is the

allocation instance. It shows that there is a set of paths where it was passed to a deallocation site

(freebuf callsite). The pointer is also used at to access a field and that is captured in the Evidence

Graph. The edge from > to ⊥ indicates that there are paths on which the pointer is not allocated
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and they should not be analyzed. The deallocation sites are colored green. The evidence graph

shows that they are in functions dgwrite, route, and ethinter. The blue node is the function pointer

callsite. The node colored white is the global variable which is used to pass the pointer from the

function ethwstrt to ethinter. Whereever there are edges to a ⊥ node they indicate paths on which

the pointer does not reach a deallocation site and they need to be checked for feasibility.
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Figure 7.6 Evidence Graph for the XINU instance
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CHAPTER 8. EVALUATION

In this chapter, we evaluate our approach using an empirical study of the Linux kernel for

Memory Leak (ML) verification. We chose the defconfig build of Linux 5.0. This is the subset of

the kernel that includes the default system utilities and drivers in the Linux kernel. Importantly,

it includes the most critical parts of the Linux kernel such as file system, memory management,

and crypto utilities. We first present our detection results and compare against the accuracy rates

reported by the state-of-the-art software verification tools. We then present some interesting case-

studies from the Linux kernel to illustrate how the Evidence Graph can be used to prove the

verification.

8.1 An empirical study of the Linux kernel

We first present the results from our empirical study of the defconfig build of the Linux kernel

5.0. We performed the analysis for the ML problem. The default system call to allocate memory

in the Linux kernel is kmalloc and the corresponding deallocation system call is kfree. There are 180

instances of kmalloc in the build. Our analysis reports three possible results

1. Safe: This means the verifier could match the given allocation instance with a corresponding

deallocation site on every feasible execution path.

2. Unsafe: This means the verifier could match the given allocation instance with a corresponding

deallocation site on some feasible execution paths but there are also paths on which it could

not match with a corresponding deallocation site.

3. Unknown: This means the verifier could not match the given allocation instance with a

corresponding deallocation site on any feasible execution path. In other words, it failed to

find a corresponding deallocation site.
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Our verifier does not timeout on any of the instances in the Linux kernel and is sound i.e.

whenever it reports an instance to be Safe it is a Safe instance and there is no problem. It can raise

false alarms due to inaccuracies in path-feasibility check or pointer-tracking due to hard to model

programming language features such as pointer arithmetic. But in those cases, Evidence Graph

points out the reason for the verifier’s failure and allows a human to take over and complete the

verification.

Table 8.1 Verification Results for Memory Leak (Linux Kernel 5.0, defconfig)

Kernel kmalloc Instances
Results

Safe Unsafe Unknown

5.0 180 116 7 57

Distribution 64.4% 3.9% 31.7%

Table 8.1 show the results of our study. Out of the 180 kmalloc instances, the verifier can

automatically verify 116 instances as Safe and has a 64.4% detection accuracy. Out of the remaining

64, 7 instances were reported as Unsafe, i.e. there are paths that the verifier thinks are feasible and

the instance cannot be matched with a deallocation. For the remaining 57 instances, the verifier

could not find a corresponding deallocation and hence reports them as Unknown. We manually

inspected the Evidence Graphs for all the 180 instances. All the Safe instances are in fact safe and

the verifier has not made any mistakes. The 7 unsafe instances are false alarms and are revealed

to be safe with a path feasibility check. The 57 unknown instances revealed complexities related to

pointer arithmetic which are currently beyond the scope of this work.

These results compare favorably with the existing state-of-the-art. LDV [97] is a popular Linux

Verification tool, which has won various software verification compeititions [33]. A study of LDV

conducted by Tamrawi [64] shows that LDV has a detection accuracy of 12%. The previous best

results for Memory Leak verification on any Linux kernel was by Tamrawi [64] that reported a

detection accuracy of 35.8%. The other tools discussed in Section 6.2.3 are not able to complete the

verification of the Linux kernel due to scalability limitations of the LLVM framework [76, 85, 77].

Our empirical study clearly shows a significant improvement in the memory leak verification results.
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8.2 Linux Kernel Case Study - I

We present a case study from the Linux Kernel that involves a loop. The relevant source code is

shown in Listing 8.1. The instance A is on line 6. It also shows that there is a matching deallocation

D on line 11. The only thing that remains is whether ascii_filter(t) call does something to the

pointer and handle the loop.

1 s t a t i c s s i z e_t get_modalias ( . . . ) {

2 f o r ( f = f i e l d s ; f−>pr e f i x && l e f t > 0 ; f++) {

3 i f ( ! c ) {

4 cont inue ;

5 }

6 t = kmalloc ( s t r l e n ( c ) + 1 , GFP_KERNEL) ;

7 i f ( ! t ) {

8 break ;

9 }

10 a s c i i _ f i l t e r ( t ) ;

11 k f r e e ( t ) ;

12 }

13 }

Listing 8.1 ML instance from the Linux Kernel involving a Loop

Figure 8.1 shows the Evidence Graph. Evidence Graph shows that ascii_filter does not modify

the pointer only uses to access some value. Thus, the only D that can be matched is on line 11 in

Listing 8.1. It also shows that there is a path on which the A is not matched with D. We should

analyze the PCG to find that path and perform a path-feasibility check.

Figure 8.2 shows the PCG for the function. The regular expression is:

(2, 3, (4 + (A, 7, D)))∗, ((2, 3(F ), A, 7(T ), 8) + ε)

Clearly, there is a behavior (2,3(F),A,7(T),8) where A is not matched with D. A trivial feasibility

check shows that this behavior will only happen when the pointer to the allocated memory, t is
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Figure 8.1 Evidence Graph for Case Study I

NULL. In other words, there is nothing to be freed. Hence, there is no memory leak and the instance

is declared Safe.

8.3 Linux Kernel Case Study - II

We present a case study from the Linux Kernel that involves backward data flow. This is created

due to the use of structures. Listing 8.2 shows the relevant code segment. The instance A is on

line 4. The pointer to the allocated memory is tmp_buf. It is passed to the function regmap_raw_read

on line 8. Further inspection shows that it is a library function (there is no Control Flow to be

computed as there is no source code available). Since library functions are not expected to free the

memory, the verifier chooses to ignore it. There is a deallocation site D on line 13 but on line 11 A is

stored inside a global variable. Now, that structure, specifically that particular field also needs to

be tracked.
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Figure 8.2 PCG for Case Study I

1 s t a t i c i n t regcache_hw_init ( . . . ) {

2 . . .

3 i f ( !map−>reg_defaults_raw ) {

4 tmp_buf = kmalloc (map−>cache_size_raw , GFP_KERNEL) ;

5 i f ( ! tmp_buf ) {

6 . . .

7 }

8 r e t = regmap_raw_read (map, 0 , tmp_buf ,

9 map−>cache_size_raw ) ;

10 i f ( r e t == 0) {

11 map−>reg_defaults_raw = tmp_buf ;

12 } e l s e {

13 k f r e e ( tmp_buf ) ;

14 }
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15 }

16 . . .

17 }

Listing 8.2 ML instance from the Linux Kernel showing backward data flow

Figure 8.3 shows the evidence graph for the instance. The red node is the instance A. Green

nodes show the deallocation sites it matched with. The white node shows the field of the global

structure. This field is accessed by two functions, regcache_init and regcache_exit to deallocate it

(which is what is shown in the Evidence Graph). It is accessed and used by many other functions

but for the sake of clarity, we are not showing all of its uses. Note that the evidence graph is also

indicating potential paths on which the allocation is not matched with a corresponding deallocation.

We should look at the PCG now.

Figure 8.3 Evidence Graph for Case Study II

Let’s start with the PCG of the function regcache_hw_init. Figure 8.4 show the PCG. It shows

that on a path (outgoing edge from if(!tmp_buf)), it is neither followed by the deallocation nor the

assignment to the global variable. This path needs to be checked for feasibility. A simple feasibility

check shows that this path is feasible only if tmp_buf is NULL, which means no memory was allocated.

Thus, it is not a problem and as long as the global variable is freed on all feasible execution paths,

this instance is Safe.
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Figure 8.4 PCG for the function regcache_hw_init

Figure 8.5 shows the PCG for the function regcache_init, one of the function that accesses the

global variable to deallocate it. Although the PCG looks pretty complicated, a feasibility check

reveals that every path other than the path on which the allocated memory is freed is feasible only

if the allocated memory is NULL. Thus, the instance is Safe in this function.

Figure 8.6 shows the PCG for the function regcache_exit, the other function that accesses the

global variable to deallocate it. This PCG has three paths and one of them deallocates the memory.

The feasibility check reveals that for the other paths to be feasible, the parent global structure needs

to be NULL. Which again means, there is no memory to be deallocated. Thus, the instance is Safe in

this function as well.

To conclude, the instance is Safe in all the functions that attempt to deallocate it. The functions

access this global variable asynchronously (these are hardware interrupts working on cache registers

of the machine). The CE Schema and the verifier based on it, currently do not support asynchronous

verification. Thus, as long the hardware itself is not faulty, this instance is Safe. The verifier assumes

to be the case and declares the instance to Safe.
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Figure 8.5 PCG for the function regcache_init

Figure 8.6 PCG for the function regcache_exit
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CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Software assurance is necessary to avoid costly software failures and to mitigate exploitation.

There is a need to establish confidence in the correctness of software verification. De Millo, Lipton,

and Perlis were among the first computer scientists to advocate that the proofs of the verification

should be a social process like mathematical proofs. Mathematical proofs increase the confidence of

a human in the correctness of the theorem. We argue, along the same lines, that the call for human-

machine collaboration to detect safety and security vulnerabilities and scrutinize the verification

results is a practical call to raise our confidence in the correctness of the verification results.

We discussed our approach to enable the human-machine collaboration for two classes of software

vulnerabilities. The first class, Algorithmic Complexity Vulnerabilities (ACV), is a class of software

security vulnerabilities rooted in loops that cause denial-of-service attacks. Often, a description of

the ACV is not known a priori, it needs to be hypothesized first before attempting to detect the

vulnerability. We developed a tool DISCOVER and an analysis workflow that can help a human

analyst hypothesize and detect ACVs in web applications. We used this tool as a performer on

DARPA STAC project [4] and achieved 100% accuracy in detecting ACVs to become one of the top

teams.

The second class of the vulnerabilities we tackled was where the description of the vulnerability

is known a priori. We used the Memory Leak (ML) problem as a representative example. It is

important to prove the correctness of the verification process of the ML problem. We developed our

approach based on the vision described in the visionary paper [5]. We developed Evidence Graph, a

novel abstraction that presents all the necessary evidence required to reason about the correctness

of the verification. A human can then scrutinize the evidence and “prove” that the verification

was correct. This required advances in the computation of the program artifacts needed for the

verification, specifically in the data flow analysis. We evaluated our approach against ML instances
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in the Linux kernel. We verified 64.44% of the instances which is the best accuracy among the

previously reported studies of the Linux kernel for ML problem. We also presented two case studies

that show how the Evidence Graph can be used to prove verification.

9.1 Future Research Directions

Now we will discuss the future research directions. Specifically, we point out two areas for

improvement in our work.

Programming Language specific challenges: Apart from the fundamental challenges de-

scribed in Section 6.2, computing verification evidence can be hindered by programming language

specific features. We describe the features we encountered during the Linux kernel verification study.

• Pointer Arithmetic: Use of pointer arithmetic by C developers obfuscates the data flow and

makes tracking of the pointer to the allocated memory difficult. This usage is especially

common to get the structure containing a given field. Linux kernel uses the container_of macro

for this.

• List Macros: The pointer to the allocated memory is escapes to a list and obfuscates the data

flow. This is done using macros in the Linux kernel which needs to be modeled properly.

• Function Pointers: The presence of function pointers makes it difficult to compute the relation

between relevant functions.

We used Atlas [38] to implement our approach. Atlas in its current state does not support

handling these features and thus our solution also can’t handle them. Addressing these features will

improve our results further.

Limitations of CE Schema: The CE schema currently does not encompass the evidence to

support verification problems that can arise from faulty hardware-software co-design. For example,

the CE schema does not include evidence to support the time and space requirements of real-time

embedded systems. These are important requirements for avionics, automotive, medical, and other
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safety-critical systems. The European Space Agency has set up the COMPASS project (Correct-

ness, Modeling, and Performance of Aerospace Systems) [98]. Its goal is to develop a coherent and

multidisciplinary approach towards developing systems at a systems engineering level. The COM-

PASS project has adopted the Architecture and Analysis Design Language (AADL) and its Error

Model Annex [99] as the key formalism. Thus, a worthwhile exercise is to extend the CE schema

to incorporate evidence based on AADL models.
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